High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws
نویسندگان
چکیده
In ([10], JCP 227 No. 6, 2008, pp. 3101–3211), the authors have designed a new fifth order WENO finite-difference scheme by adding a higher order smoothness indicator which is obtained as a simple and inexpensive linear combination of the already existing low order smoothness indicators. Moreover, this new scheme, dubbed as WENO-Z, has a CPU cost which is equivalent to the one of the classical WENO-JS ([2],JCP 126, pp. 202–228 (1996)) and significantly lower than that of the mapped WENO-M,([5],JCP 207, pp. 542–567 (2005)), since it involves no mapping of the nonlinear weights. In this article, we take a closer look at Taylor expansions of the Lagrangian polynomials of the WENO substencils and the related inherited symmetries of the classical lower order smoothness indicators to obtain a general formula for the higher order smoothness indicators that allows the extension of the WENO-Z scheme to all (odd) orders of accuracy. We further investigate the improved accuracy of the WENO-Z schemes at critical points of smooth solutions as well as their distinct numerical features as a result of the new sets of nonlinear weights and we show that regarding the numerical dissipation WENO-Z occupies an intermediary position between WENO-JS and WENO-M. Some standard numerical experiments such as the one dimensional Riemann initial values problems for the Euler equations and the Mach 3 shock density-wave interaction and the two dimensional double-Mach shock reflection problems are presented.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملEssentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. ...
متن کاملWLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes
ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For u...
متن کاملAn implicit WENO scheme for steady-state computation of scalar hyperbolic equations
Weighted essentially non-oscillatory (WENO) schemes have proved useful in a variety of physical applications. They capture sharp gradients without smearing, and feature high order of accuracy along with nonlinear stability. The high order of accuracy, robustness, and smooth numerical uxes of the WENO schemes make them ideal for use with Jacobian based iterative solvers, to directly simulate the...
متن کاملNon-polynomial ENO and WENO finite volume methods for hyperbolic conservation laws
The essentially non-oscillatory (ENO) method is an efficient high order numerical method for solving hyperbolic conservation laws designed to reduce the Gibbs oscillations, if existent, by adaptively choosing the local stencil for the interpolation. The original ENO method is constructed based on the polynomial interpolation and the overall rate of convergence provided by the method is uniquely...
متن کاملWeighted Essentially Non-Oscillatory Schemes on Triangular Meshes
In this paper we construct high order weighted essentially non-oscillatory (WENO) schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. We present third order schemes using a combination of linear polynomials, and fourth order schemes using a combination of quadratic polynomials. Numerical examples are shown to demonstrate the accuracies and robustness of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 230 شماره
صفحات -
تاریخ انتشار 2011